This work focuses on the prediction of the human’s motion in a collaborative human-robot object transfer with the aim of assisting the human and minimizing his/her effort. The desired pattern of motion is learned from a human demonstration and is encoded with a DMP (Dynamic Movement Primitive). During the object transfer to unknown targets, a model reference with a DMP-based control input and an EKF-based (Extended Kalman Filter) observer for predicting the target and temporal scaling is used. Global boundedness under the emergence of bounded forces with bounded energy is proved. The object dynamics are assumed known. The validation of the proposed approach is performed through experiments using a Kuka LWR4+ robot equipped with an ATI sensor at its end-effector.


This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 820767.

The website reflects only the view of the author(s) and the Commission is not responsible for any use that may be made of the information it contains.

Contact Information
Prof. Zoe Doulgeri
Automation & Robotics Lab
Aristotle University of Thessaloniki
Department of Electrical & Computer Engineering
Thessaloniki 54124, Greece
Collaborate Project CoLLaboratE Project
© 2018-2020 All rights reserved.